Insurer/Signing Server: Overview and
Development Guide

Release

Information 1.00
This documentation is intended for developers and
Target . - .
audience system integrators providing an Insurer Server for their

App using the VICard SDK.

The Insurer Server is used to
Summary provide vekaNumberClaim-Lists to access insurance
card data in a secure manner.

Content

e 1 Overview

o 1.1 Certificate Signing Process

o 1.2 Key-pair creation by the insurer

o 1.3 insurerAccessToken creation by Sasis
e 2 Development Guide

o 2.1 Creation of an Insurer Server

Backend

Login
Insurer Server Insurer Host-App
—signed YeKa no's»|

PASETO

I \
<

Signing Server VICard SDK API Mobile GW
—PASETO, HTTPS—>

(See Architecture / Documentation for more Detail)

https://confluence.sasis.ch/pages/viewpage.action?pageId=100467253

Overview

The insurer server must be implemented by the insurer and is needed to create signed
insurance number claims that are used by the VICARD SDK to get card- data for a
specific insured person.

Certificate Signing Process
SASIS and the Insurer each create Ed25519 key-pairs compatible with paseto.

The insurer has to generate a key-pair and send his BAG-Nr. (BAGoflnsurer) as well as
the public key of the generated key-pair to Sasis.

Sasis then creates the insurerAccessToken via a local endpoint in the VicService and
sends it to the insurer.

The insurer develops the Insurer Server using the insurerAccessToken to provide a
vekaNrToken for the SDK.

VIC Certificate Signing Process

generate
Ed25519
insurer keypair

generate
vekaNumberClaim

Insurer

send
publicKeyOfInsurer
and
BAGofInsurer
to SASIS

Y

initialize . :‘eate Tok send
certificate Insir:;ig(r:l‘i.‘:gsswi:h en insurerAccessToke
signing process privateKeyOFVicRoot back to insurer

every 3 years
or when needed

SASIS

Key-pair creation by the insurer

The insurer generates an Ed25519 keypair using the provided web app. The web app
works locally in the browser.

Live Environment:

https://www.vvk-online.ch/virtual/keypair-generator.html

The resulting key-pair is stored in a Signing Server under control of the insurance. This
function of this server is to perform paseto signatures.

The private key never leaves this location.

InsurerAccessToken creation by Sasis

This key-pair generated in the last section is used for requests and responses from the
insurance. The public key part of the key-pair is required to generate the
insurerAccessToken.

The insurerAccessToken is a public paseto token containing the
publicKeyOfinsurer and BAGoflnsurer (or other identification) of the insurance.

To get the insurerAccessToken, the insurer sends the previously generated
publicKeyOfinsurer together with the BAGoflnsurer to SASIS.

This is done via an email to Sasis:

To: vicard@sasis.ch
Subject: VICARD insurerAccessToken Request

Body:

Please generate and return an insurerAccessToken(s) for the following information:
BAGoflnsurer: (Your "BAGoflnsurer” here, can be more than one)
publicKeyOfinsurer: (Your "publicKeyOfinsurer" here, can be more than one)
SASIS Environment: (Live)

Sasis then creates the insurerAccessToken by using an endpoint in the VicService.

This endpoint is and should not be publicly available, and is available only for internal
use by SASIS employees.

Sasis calls this endpoint passing the BAGofinsurer and the publicKeyOfinsurer The
service internally uses the Sasis VIC Root key-pair to create the

https://www.vvk-online.ch/virtual/keypair-generator.html
mailto:vicard@sasis.ch

insurerAccessToken. The VIC Root key-pair is versioned, and new tokens will always
be signed with the latest version.

The insurerAccessToken is sent to the insurer.

At the insurer, the insurerAccessToken should be stored on the insurer server. Itis
used in the Insurer Server developed by the insurer.

Development Guide

The Insurer Server is called by the insurers' host app. It generates a set of
vekaNumberClaims described below. These claims are put in the SDK using an SDK-
API.

The Insurer Server is just a basic REST server. It calls the Signing Server implementing
paseto. Using https://paseto.io/ anyone could write such a server depending on the
language needed.

Creation of an Insurer Server

You need to provide an endpoint of a rest service that runs on your server environment.
You call this endpoint from your APP and put the result in the SDK via a method of the
SDKs API. The result is a list of vekaNrTokens.

Create a keypair using: https://www.vvk-online.ch/virtual/keypair-generator.html
Store private key as privateKeyOfIinsurer in your SigningServer
Store public key as publicKeyOfinsurer in your SigningServer
Send an email with the following contents to vicard@sasis.ch (you can use one
single request for all of your BAG numbers)
a. your BAGoflnsurer
b. your generated publicKeyOfinsurer
Wait for the response to the eMail
Store the contained insurerAccessToken
Implement a BASIC Insurer REST server
a. Create an endpoint that returns a list of signed vekaNrToken. This list is
called vekaNumberClaim-List here. Find a detailed description of the
vekaNrToken structure below.
8. From your APP, you call your rest server endpoint and put the resulting
vekaNumberClaim-List in the SDK using the
API: VicSdk.setVekaNrClaims(vekaNumberClaim-List) (details in Android or
iOS SDK)

rwnh R

No o

https://paseto.io/
https://www.vvk-online.ch/virtual/keypair-generator.html
mailto:vicard@sasis.ch

vekaNrToken

The vekaNrToken is a paseto token that contains the cardldentificationNumber of an
insured person as well as the insurerAccessToken and is signed using the
privateKeyOfInsurer. It also has a footer containing the publicKeyOfinsurer.

1. Each vekaNrToken must contain
1. the cardldentificationNumber of the insured person,
2. the current date.
3. the publicKeyOfinsurer you stored in step 3
4. publicKeyOfinsuredPerson you get from SDK API:
"VicSdk.getUserPublicKey" (details in Android or iOS SDK)
5. the insurerAccessToken you received in step 6

2. Use your Signing Server to sign with PasetoV2.sign (as described
in https://paseto.io/) with

1. payload vekaNrToken

2. secret key (sk) privateKeyOfinsurer
3. footer publicKeyOfinsurer

The signing should be performed using your SigningServer. See the following pages for
example implementations in Java and Node.js.

https://paseto.io/

The completed JSON of a vekaNrToken should look as follows:

---- JSON

{

iss: "did:vic-v1:" + $publicKeyOfIinsurer

sub: "did:vic-v1:" + $publicKeyOfinsuredPerson

iat: "2007-12-03T10:15:30+01:00" // 1ISO-8601 Date as String

cardldentificationNumber: "1234567890" // insurance card number

insurerAccessToken: + $insurerAccessToken // insurerAccessToken is provided by sasis

}

Footer
publicKeyOfinsurer (HEX-Encoded)

Definition of fields:

°iss
The Issuer
Public Key of the insurer in the format: "did:vic-v1:$publicKeyOfinsurer"

* sub

The Subject
This is publicKeyOfinsuredPerson. This public key is requested from
the SDK.

*jat

Issued at
String representation of 1ISO-8601 Date such as "2007-12-03T10:15:30+01:00".

* cardldentificationNumber
The card number of the insured person.

* insurerAccessToken

The insurerAccessToken

An example of implementation in node.js:

, function () {

, function () {

, function () {

(pubkeyofInsurance) => {

((req, res) => {

()5

(async () => {
{

An example of implementation in Java:

public class {

private static final

private static final

E}

private static final

public static void []1 args) throws

public static void () throws

final

0 {
@0verride

public version, purpose, footer) {

(. M

{

private static (final keyHexString) {
)

(keyHexString), @,)

keyHexString) {

(keyHexString);

