
VICARD iOS SDK
ti&m AG

Version 2.6.10, 2024-03-04

The VICARD SDK allows every Swiss citizen to share data securely with medical
persons using their iOS mobile phone.

Overview
As users are used to access all services using their mobile phone, they expect to be able to do the
same within medical processes. Additionally, some digital services cannot be accessed using a
smart-card because of technical limitations. This SDK provides a useful alternative for users who do
not want to carry a physical card and opens the door to new processes.

Versioning
• Current version of the VicSdkiOS: 2.6.10;

• Minimum iOS version supported: 15.0;

• iOS SDK version: 17.2;

Key features
• Looks the same for all insurances, to reduce confusion at medical care providers

• Add several insurance cards, according to the family structure of your insurance

• Check-in at a medical care provider with the use of a printed QR code

• Receive a strong verification from a medical person or an insurance

• Use this verification in other medical processes and web portals

• Customize colors and fonts to match your insurance branding

• In a separate SDK: allow your users to scan the front or back side of their insurance card

1

Setup
This SDK supports only native integrations. It’s not compatible with any cross-platform
solutions. We recommend using CocoaPods to install the VICARD SDK. You can install Cocoapods by
following the installation instructions. If you’d rather not use CocoaPods, please refer to your
contact person for more integrations possibilities, such as integrating the VICARD SDK frameworks
directly.

CocoaPods
1. If you don’t have an Xcode project yet, create one now.

2. Create a Podfile if you don’t have one:

$ cd YOUR-PROJECT-DIRECTORY
$ pod init

3. Add the VicSwift pod together with the other pods you want to install. You can include a Pod in
your Podfile like this:

platform :ios, '15.0'

target 'YOUR_APP' do
 use_frameworks!

 pod 'VicSwift', :git =>
'https://<USERNAME>@bitbucket.sasis.ch/scm/vicsdk/vicsdkios.git'
end

4. Install the pods and open the .xcworkspace file to see the project in Xcode.

$ pod install
$ open YOUR-PROJECT.xcworkspace

Integration

Permissions
Include the following privacy key to your app’s info.plist file to allow the usage of the camera:

<!-- Required to access mobile's camera -->
<key>NSCameraUsageDescription</key>
<string>YOUR_CUSTOM_REASON_TO_ACCESS_CAMERA</string>

2

https://guides.cocoapods.org/using/getting-started.html#getting-started

Import dependencies
Import the VICARD SDK in your app and customize it:

1. Import the VicSwift module in your UIApplicationDelegate:

import VicSwift

2. Configure the VicSettings and VicCardsSdk shared objects, typically in your application’s
application:didFinishLaunchingWithOptions: method:

VicSettings.Typography.FontFamily.regular = "YOUR_CUSTOM_FONT_FAMILY"
VicSettings.Typography.TextStyle.pageTitle.size = YOUR_CUSTOM_FONT_SIZE

let image = UIImage(named: "YOUR_CARD_DESIGN")
VicSettings.Card.setImage(image: image)

For more configuration options, please refer to the Customization section.

Cards
The cards of all the family members can be shown by the VICARD SDK. These can then be used to
scan a QR code and transmit a signed/verified version of the card to a third party such as a hospital.

Show cards

Before showing the user’s cards, the insurer application needs to fetch the user’s VekaNr claims

3

from the insurer server and pass them to the VICARD SDK.

The list of VekaNr claim has to be provided as a JSON array of public PASETOs v2, with one PASETO
corresponding to one VekaNr claim. This enables the VICARD SDK to authenticate to the SASIS
server and fetch the data of all the cards.

After fetching the VekaNr claims, pass them to the VicCardsSdk class by calling the setVekaNrClaims
function as follows:

VicCardsSdk.setVekaNrClaims(claims: vekaNrClaims)

The card view controller can then be shown, for example as a child view controller:

override func viewDidLayoutSubviews() {
 if (YOUR_CARD_VIEW.subviews.isEmpty) {
 self.addVicCardsSubview()
 }
}

func addVicCardsSubview() {
 let cardViewController = VicCardViewController(requestUrl: nil)
 addChild(cardViewController)
 cardViewController.view.frame = YOUR_CARD_VIEW.layer.bounds
 YOUR_CARD_VIEW.addSubview(cardViewController.view)
}

NOTE YOUR_CARD_VIEW is the view where the cards will be shown.

VICARD errors

The fetchCards, decodeAndValidateCards and updateCards functions return a list of error if something
wrong happens during their execution. Here is the list of the possible errors returned by the
functions:

Error Code Description

Request to get the Cards data
failed

100 request failed

Parse cards data failed 101 parsing failed

Validation of the subject field of
the card claim failed

102 validation of claim subject
failed

Error retrieving the public key
of the user

103 get user keypair failed

Creation of the vicard token
from the vekaNrClaim failed

104 create token failed

4

Signing of the vicard token
failed

105 sign token failed

Error retrieving the cards data
from the local storage

106 get user default key failed

Fetch and validate cards

The VicSdkiOS exposes the functions used to fetch and validate the cards retrieved from the SASIS
server.

Use the VicCardsSdk.fetchCards function to encode and sign the vekaNrClaims set on the SDK and
query the SASIS server to retrieve the encoded cards:

VicCardsSdk.fetchCards(completionHandler: ([String], [VicError]) -> Void)

Use the VicCardsSdk.decodeAndValidateCards function to decode the cards returned by the SASIS
server and validate them:

VicCardsSdk.decodeAndValidateCards(cardsData: [String]) -> ([VicCard], [VicError])

Update cards

Use the VicCardsSdk.updateCards function to update the cards rendered on the
VicCardViewController:

// Update cards
VicCardsSdk.updateCards()

After the update, all registered VicCardDelegate’s will be informed of any `VicError that might
have happened during the update.

VicCard Delegate

VicCardDelegate {
 //This method will be called whenever the card information is updated
 func cardsUpdateFinished(errors: [VICError])

 //This method will be called on all registered VicCardDelegate whenever a new card
is selected
 func didSelectCardAt(index: Int)

 //This method will be called on all registered VicCardDelegate whenever a new card
is selected
 func didSelectCardWith(number: String)

5

}

Delete cards

As the cards will be saved offline, you need to call the following function to delete all card data
when you change from one user to the other or if you allow a user to log out:

VicCardsSdk.deleteAll()

Card selection

The VicCardViewController exposes the following methods and properties to manually handle the
scrolling to specific cards or customize how the card details or tutorial screens are shown:

let cardViewController = VicCardViewController(requestUrl: requestUrl, delegate: self)

// Property for enabling/disabling scroll gesture (this also hides page indicators)
cardViewController.isScrollEnabled

// Method to customize the front card details list order or ever to remove items from
the front card view.
// It accepts a list of VicCardListItem in the same order as it is excepted to be
listed inside the card. By omitting one, it will result in hiding the same from the
view.
cardViewController.defineCardListItemOrder([VicCardListItem])

// Method to hide specific tutorial screens. By default the following screens are
displayed: Welcome, QRCode, Barcode, NFC, BackCard.
// It's also possible to hide all tutorial screens by passing to the following method
`VicTutorialScreen.allCases`. In this case, the info button on top of every card will
disappear.
cardViewController.hideTutorialScreen([VicTutorialScreen])

// Property representing the index of the currently displayed insurance card
cardViewController.currentCardIndex
// Method to scroll to a specific card
cardViewController.selectCardAt(index: Int)

// Property representing the number of the currently displayed insurance card
cardViewController.currentCardNumber
// Method to scroll to a specific card
cardViewController.selectCardWith(number: String)

User public key
The VICARD SDK securely stores a public-private keypair for the user used to sign the VekaNr

6

claims and the selective disclosure response. Call the getUserPublicKey function as follows to
retrieve the user’s public key from the VICARD SDK:

let userPublicKey = VicCardsSdk.getUserPublicKey()

Universal links / NFC Tags
Universal Links and NFC Tags are useful to speed up the check-in process at a care provider.

• Universal Links allow the user to scan the check-in QR code directly from their Camera app;

• NFC Tags allow the user to start the check-in process by simply tapping the top of the phone to
where the NFC Tag is located (only on iPhone Xs, iPhone Xs Max and iPhone XR).

The following cases need to be handled in order to implement Universal Links and NFC Tags:

1. User is already logged in. The application redirects the user to a card-selection screen where the
user will be able to choose which insurance card to check-in.

2. User is not logged in. The application redirects the user to the login screen. After a successful
login, the user will be redirected to the card-selection screen.

7

Implementation

Follow the steps below to handle Universal Links and NFC Tags on your application:

1. Add the Associated Domains Entitlements to your application. The domain you are going to link
to your application are related to the QR-Code / NFC Tag the application is going to scan / read.
Therefore there are two domains to link, one for the StageNext environment and one for the
Prod environment. If your application has different target per environment, you need to create
one .entitlements file for each target and link it to the target on Targets/[TARGET-NAME]/Build
settings/Code signing entitlements.

1. Domain used for the StageNext environment: stagenext.vvk-online.ch

2. Domain used for the Prod environment: www.vvk-online.ch

2. Send your app ids (in the format of <team identifier>.<bundle identifier>, e.g.
4N2G277B4M.ch.ti8m.vk.sanacur.stagenext) to your contact person from SASIS. We will add your
app ids to the apple-app-site-association file on the StageNext and Prod servers.

3. Handle the data received from the universal link or NFC tag in your UIApplicationDelegate as
follows:

public func application(
 _ application: UIApplication,
 continue userActivity: NSUserActivity,
 restorationHandler: @escaping ([UIUserActivityRestoring]?) -> Void
) -> Bool {
 guard userActivity.activityType == NSUserActivityTypeBrowsingWeb else {
 return false
 }

 if (userActivity.webpageURL != nil) {
 guard let requestUrl = userActivity.webpageURL else {
 return false
 }

 return handleVicLink(requestUrl: requestUrl.absoluteString)
 }

 let ndefMessage = userActivity.ndefMessagePayload
 guard ndefMessage.records.count > 0,
 ndefMessage.records[0].typeNameFormat != .empty,
 let requestUrl = String(data: ndefMessage.records[0].payload, encoding:
.utf8)
 else {
 return false
 }

 return handleVicLink(requestUrl: requestUrl)
}

func handleVicLink(requestUrl: String) -> Bool {

8

https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_developer_associated-domains

 var vc: UIViewController? = nil

 if (CHECK_IF_USER_IS_LOGGED) {
 // User is logged, redirect to the card selection screen
 vc = UIStoryboard(name: "Main", bundle:
nil).instantiateViewController(withIdentifier: "YOUR_CARDS_VIEW_NAME")
 (vc as! YOUR_CARD_VIEW_CONTROLLER).requestUrl = requestUrl
 } else {
 // User is not logged, redirect to the login screen
 vc = UIStoryboard(name: "Main", bundle:
nil).instantiateViewController(withIdentifier: "YOUR_LOGIN_VIEW_NAME")
 (vc as! YOUR_LOGIN_VIEW_CONTROLLER).requestUrl = requestUrl
 }

 self.window?.rootViewController = vc
 self.window?.makeKeyAndVisible()

 return true
}

NOTE Change the above handleVicLink function to fit your application.

4. Add the requestUrl attribute to the card-list view controller of your application and pass it to the
VicCardViewController:

class YOUR_CARD_VIEW_CONTROLLER: UIViewController {
 [...]
 var requestUrl: String?

 func addVicCardsSubview() {
 let cardViewController = VicCardViewController(requestUrl: requestUrl)
 [...]
 }
}

5. Add the requestUrl attribute to the login view controller of your application and pass it to the
card-list view controller after a successful login:

class YOUR_LOGIN_VIEW_CONTROLLER: UIViewController {
 [...]
 var requestUrl: String? = nil

 func onSuccessfulLogin() {
 let sb = UIStoryboard(name: "YOUR_CARD_VIEW_NAME", bundle: nil)
 let vc = sb.instantiateInitialViewController()! as!
YOUR_CARD_VIEW_CONTROLLER
 vc.requestUrl = self.requestUrl
 self.present(vc, animated: true)

9

 }

Customization

Language
In order to change the language of the VICARD SDK, call the setLanguage method of the VicSettings:

VicSettings.Language.setLanguage(language: VicLang.EN)

The languages supported by the VICARD SDK are: German, English, Italian, French.

Typography

Font Families

In order to customize the font families of the VICARD SDK, change the following settings after
initializing the SDK:

VicSettings.Typography.FontFamily.light
VicSettings.Typography.FontFamily.regular
VicSettings.Typography.FontFamily.medium
VicSettings.Typography.FontFamily.semibold
VicSettings.Typography.FontFamily.bold

Text Styles

In order to customize the text styles of the VICARD SDK, change the following settings after
initializing the SDK:

VicSettings.Typography.TextStyle.pageTitle
VicSettings.Typography.TextStyle.pageTitleInverted
VicSettings.Typography.TextStyle.subhead
VicSettings.Typography.TextStyle.subheadInverted
VicSettings.Typography.TextStyle.copytext
VicSettings.Typography.TextStyle.copytextInverted
VicSettings.Typography.TextStyle.copytextBold
VicSettings.Typography.TextStyle.copytextBoldInverted

Each typography object can be customized by the following settings:

family: String
size: UInt8

10

weight: UIFont.Weight
spacing: Float
uppercase: Bool
color: {
 normal: UIColor
 disabled: UIColor
 error: UIColor
}

Buttons
In order to customize the buttons of the VICARD SDK, change the following settings after initializing
the SDK:

VicSettings.Button.primary
VicSettings.Button.primaryInverted
VicSettings.Button.secondary
VicSettings.Button.secondaryInverted

Each button object can be customized by the following settings:

text: {
 family: String
 size: UInt8
 weight: UIFont.Weight
 spacing: Float
 uppercase: Bool
 color: {
 normal: UIColor
 disabled: UIColor
 selected: UIColor
 }
}
backgroundColor: {
 normal: UIColor
 disabled: UIColor
 selected: UIColor
}
border: {
 width: UInt8,
 radius: UInt8,
 color: {
 normal: UIColor
 disabled: UIColor
 selected: UIColor
 }
}
iconColor: {

11

 normal: UIColor
 disabled: UIColor
 selected: UIColor
}

Icons
In order to customize the icons color of the VICARD SDK, change the following settings after
initializing the SDK:

VicSettings.Icon.close
VicSettings.Icon.info
VicSettings.Icon.flip
VicSettings.Icon.error
VicSettings.Icon.system
VicSettings.Icon.systemInverted

Each icon object can be customized by the following settings:

color: UIColor

Cards
In order to customize the cards of the VICARD SDK, change the following settings after initializing
the SDK:

VicSettings.Card.style
VicSettings.Card.freeField
VicSettings.Card.setMandatoryFreeField(freeText: String, cardNumber: String)
VicSettings.Card.setImage(image: UIImage, design: VicSettings.Card.Image, cardNumber:
String)
VicSettings.Card.setImageTextColor(color: VicLabelColorState, cardNumber: String)
VicSettings.Card.setImageSecondaryTextColor(color: VicLabelColorState, cardNumber:
String)
VicSettings.Card.allowBackside

The card style object can be customized by the following settings:

front: {
 title: {
 family: String
 size: UInt8
 weight: UIFont.Weight
 spacing: Float
 uppercase: Bool

12

 color: {
 normal: UIColor
 disabled: UIColor
 error: UIColor
 }
 },
 label: {
 family: String
 size: UInt8
 weight: UIFont.Weight
 spacing: Float
 uppercase: Bool
 color: {
 normal: UIColor
 disabled: UIColor
 error: UIColor
 }
 },
 text: {
 family: String
 size: UInt8
 weight: UIFont.Weight
 spacing: Float
 uppercase: Bool
 color: {
 normal: UIColor
 disabled: UIColor
 error: UIColor
 }
 }
},
complementaryBack: {
 freeField: {
 family: String
 size: UInt8
 weight: UIFont.Weight
 spacing: Float
 uppercase: Bool
 color: {
 normal: UIColor
 disabled: UIColor
 error: UIColor
 }
 }
},
inner: {
 text: {
 family: String
 size: UInt8
 weight: UIFont.Weight
 spacing: Float

13

 uppercase: Bool
 color: {
 normal: UIColor
 disabled: UIColor
 error: UIColor
 }
 },
 border: {
 width: UInt8,
 radius: UInt8,
 color: {
 normal: UIColor
 disabled: UIColor
 error: UIColor
 }
 }
}
banner: {
 text: {
 family: String
 size: UInt8
 weight: UIFont.Weight
 spacing: Float
 uppercase: Bool
 color: {
 normal: UIColor
 disabled: UIColor
 error: UIColor
 }
 },
 backgroundColor: {
 normal: UIColor
 disabled: UIColor
 error: UIColor
 },
 iconColor: {
 normal: UIColor
 disabled: UIColor
 error: UIColor
 }
},
selection: {
 label: {
 family: String
 size: UInt8
 weight: UIFont.Weight
 spacing: Float
 uppercase: Bool
 color: {
 normal: UIColor
 disabled: UIColor

14

 error: UIColor
 }
 },
 text: {
 family: String
 size: UInt8
 weight: UIFont.Weight
 spacing: Float
 uppercase: Bool
 color: {
 normal: UIColor
 disabled: UIColor
 error: UIColor
 }
 }
},
backgroundColor: {
 normal: UIColor
 disabled: UIColor
 error: UIColor
},
border: {
 width: UInt8,
 radius: UInt8,
 color: {
 normal: UIColor
 disabled: UIColor
 error: UIColor
 }
}

The card freeField attribute holds the text displayed in the free field space of the back side of the
cards. To customize it, just set your preferred text like following:

VicSettings.Card.freeField.mandatory = "YOUR_MANDATORY_FREE_FIELD_TEXT"
VicSettings.Card.freeField.complementary = "YOUR_COMPLEMENTARY_FREE_FIELD_TEXT"

It is also possible to override the mandatory free field for a specific card number by:

VicSettings.Card.setMandatoryFreeField(freeText: "YOUR_MANDATORY_FREE_TEXT",
cardNumber: "YOUR_CARD_NUMBER")

The VICARD SDK comes with one built-in background image, which is used as default for all cards.
To customized the card image, you need to add your custom card image to your Xcode assets, such
as Assets.xcassets. This image must respect following rules:

• it has to be a PNG with the bottom part empty as the card-holder information is put on there
dynamically

15

• it must have a form factor of 1:1.73 e.g.: 945x546 pixel

• the logo must be placed in the right half of the image and must be horizontally right aligned and
vertically centered. Its maximum size must be 70% width and 60% height of the total image.

By default, all cards will have the following built-in background image:

You can set the default card background after initializing the SDK:

let image = UIImage(named: "YOUR_CARD_DESIGN")
VicSettings.Card.setImage(image: image)

To have multiple designs for different cards, a design attribute such as complementaryFront can be
specified:

let image = UIImage(named: "YOUR_COMPLEMENTARY_CARD_DESIGN")
VicSettings.Card.setImage(image: image, design: .complementaryFront)

It is also possible to set an image for a specific card number with or without specifying a design
attribute, like so:

let defaultImage = UIImage(named: "YOUR_DEFAULT_CARD_DESIGN")
VicSettings.Card.setImage(image: defaultImage, cardNumber: "YOUR_CARD_NUMBER")

let image = UIImage(named: "YOUR_COMPLEMENTARY_CARD_DESIGN")
VicSettings.Card.setImage(image: image, design: .complementaryFront, cardNumber:
"YOUR_CARD_NUMBER")

You can even customize inner card text color for a specific card number by calling the following
function:

16

let simpleTextColor = VicLabelColorState(color: .white)
VicSettings.Card.setImageTextColor(color: simpleTextColor, cardNumber:
"YOUR_CARD_NUMBER")

let textColor = VicLabelColorState(normal: .white, disabled: .gray, error: .red)
VicSettings.Card.setImageTextColor(color: textColor, cardNumber: "YOUR_CARD_NUMBER")

The second text on the card can be customized in a different color as follows:

let secondaryTextColor = VicLabelColorState(color: .purple)
VicSettings.Card.setImageSecondaryTextColor(color: secondaryTextColor, cardNumber:
"YOUR_CARD_NUMBER")

Indicators
In order to customize the indicators of the VICARD SDK, change the following settings after
initializing the SDK:

VicSettings.Indicator.loading
VicSettings.Indicator.page
VicSettings.Indicator.scroll

The loading object can be customized by the following settings:

color: UIColor

The page object can be customized by the following settings:

color: {
 normal: UIColor
 active: UIColor
}

The scroll object can be customized by the following settings:

color: UIColor
radius: UInt8

Card Backside English
The european backside of cards can be shown in English regardless of the language set for the app.
Default:false. To set English as default for the backside use

17

VicSettings.Card.enableEnglishEuropeanCard = true

Complementary Card Backside
Showing the backside of complementary cards can be enabled/disabled (per insurance not per
card). Default: enabled. To disable use

VicSettings.Card.showComplementaryCardBackside = false

This disables the rotation when clicking on the card frontside and also hides the rotation button

Use Alternative Label for Policy Number
The policy number label is labelled Policy Number by default. Alternatively, the label can be
relabelled to Insured Person no. To use the alternative label, set the following property:

VicSettings.Card.useAlternativeLabelForPolicyNumber = true

18

	VICARD iOS SDK
	Overview
	Versioning
	Key features

	Setup
	CocoaPods

	Integration
	Permissions
	Import dependencies
	Cards
	User public key
	Universal links / NFC Tags

	Customization
	Language
	Typography
	Buttons
	Icons
	Cards
	Indicators
	Card Backside English
	Complementary Card Backside
	Use Alternative Label for Policy Number

